Tag Archives: Clay Pit Ponds State Park Preserve

Macroinvertebrates in Clay Pit Ponds State Park Preserve

What Are Macroinvertebrates?

Freshwater benthic macroinvertebrates, usually simply called macroinvertebrates, are small animals that live in the water. They have three parts to their name: “Benthic” refers to the bottom part of a body of water, “macro” means that we can see it with our naked eye, and “invertebrate” means that it has no spine, or vertebrae. So, a benthic macroinvertebrate is an organism that lives at the bottom of streams, rivers, lakes, and ponds for part of its life, can be seen with the unaided eye, and has no backbone. Some macroinvertebrates have three life stages, while others have four. If the life cycle has four stages, it is called complete metamorphosis. If it only has three stages, the life cycle is called incomplete metamorphosis. The stages of complete metamorphosis are egg, larva, pupa, and winged or aquatic adult. The stages of incomplete metamorphosis are egg, nymph, and flying adult. Adult macroinvertebrates sometimes leave the water but live near it, and others continue to live in the water. Macroinvertebrates are a vital food source for fish, turtles, wading birds, and small mammals.

They are well suited to live in water, and many have interesting adaptations that allow them to thrive underwater. Caddisfly larvae build mobile protective cases out of stones, leaves, and small sticks to keep themselves safe. Mayfly nymphs have large gill areas to help them breathe. Predaceous diving beetles carry small bubbles of oxygen at the ends of their abdomens from the surface to use to breathe while underwater.

Another interesting thing about macroinvertebrates is that they can be used as an indicator of health for a body of water. This is because some species of macroinvertebrates are more sensitive to environmental stressors than others. Rivers, streams, and ponds with a variety of macroinvertebrates are considered healthy.

A mayfly nymph on the left; a mayfly adult on the right. Notice the gills along the back end of the nymph, this is how the animal gets oxygen from the water, similar to a fish.

Macroinvertebrates need dissolved oxygen in order to breathe in the water, just like fish. Dissolved oxygen references the microscopic bubbles of oxygen gas that are mixed with the water for aquatic creatures to breathe. Dissolved oxygen is sometimes measured in parts per million (ppm). Most fish do well in water with 5ppm of dissolved oxygen or higher. Pollution can cause water temperatures to rise, which reduces the amount of dissolved oxygen in the water.  So, pollution decreases dissolved oxygen levels, making it hard for macroinvertebrates to breathe. A healthy body of water will have dissolved oxygen levels that are at or above 5ppm.

Macroinvertebrates as Indicators of Water Quality

There are many different types of macroinvertebrates, all with different sensitivities to temperatures, the amount of dissolved oxygen in the water, and pollution levels. Macroinvertebrates require similar dissolved oxygen levels as fish, but some species, such as mayflies, caddisflies, and stoneflies, need low temperatures and high levels of dissolved oxygen to survive. If you look for macroinvertebrates and find mayfly and stonefly nymphs in a stream, you can conclude that the stream is fairly healthy because those organisms could not survive otherwise. Those species are considered to be sensitive to pollution.

There are also species that are somewhat tolerant of pollution, like dragonflies, damselflies, and crayfish. These organisms do not need as much dissolved oxygen or as cool of temperatures as those that are sensitive to pollution and can stand a small amount of pollution in the water. If one were to find dragonfly nymphs in a stream but no mayfly, caddisfly, or stonefly nymphs, that could be an indicator that the stream has some pollution.

Finally, there are species that are tolerant of pollution. Some of these species are midges, backswimmers, and aquatic worms. These organisms can withstand a moderate amount of pollution, can live in warmer water, and do not need as much dissolved oxygen to survive. So, if one were to find many midge larvae and aquatic worms in a stream and little else, this would indicate that the water there is fairly polluted. Sometimes, tolerant macroinvertebrates can be abundant in degraded waters since they are not competing with others for resources like food and shelter.

Below is a list of several species of macroinvertebrates with their varying tolerances of pollution.

Sensitive to Pollution

(found in water with little or no pollution)

Somewhat Tolerant of Pollution

(found in water with little to some pollution)

Tolerant of Pollution

(found in water with little to substantial pollution)

Stonefly Scud Water Strider
Mayfly Crayfish Backswimmer
Caddisfly Alderfly Midge
Hellgrammite (Dobsonfly) Black Fly Aquatic Worm
Water Penny Aquatic Beetle Leech
Gilled Snail Crane Fly Pouch Snail
Dragonfly Mosquito
Freshwater Clam
Sow Bug
A stonefly nymph. Photo by Bohringer Friedrich
A stonefly nymph. Stoneflies are good indicators of healthy water. Photo by Bohringer Friedrich: https://en.wikipedia.org/wiki/Plecoptera#/media/File:SteinfliegenLarve2.JPG
A scud, photo by Michael Manas
A scud. Scuds are somewhat tolerant of pollution and can be found in fairly healthy waterbodies Photo by Michael Manas: https://en.wikipedia.org/wiki/Gammarus#/media/File:Gammarus_roeselii.jpg
Mosquito larvae, photo by James Gathany
Mosquito larvae. Mosquitos are tolerant of pollution and can indicate polluted water Photo by James Gathany: https://en.wikipedia.org/wiki/Mosquitofish#/media/File:Culex_sp_larvae.png

Pond Investigators Program

Clay Pit Ponds State Park Preserve’s education team has done several surveys of the ponds within the park to get an idea of the water’s health. Clay Pit Ponds is the only NY state park on Staten Island; the park contains 265 acres of forest, fields, wetlands, and five ponds. The park offers an educational program all about macroinvertebrates called Pond Investigators.  In this program, students learn to identify macroinvertebrates, understand them as an indicator of water quality, and conduct a survey of one of the ponds. The most recent survey was conducted in Goode’s Pond, which is located along the Clay Pit Pond trail (orange markers). To survey for macroinvertebrates, the students and the Clay Pit Ponds education team scraped the bottom substrate of the pond, including some aquatic vegetation, with a dip net. Off to the side, a tub was partially filled with pond water. The collections from the dip net were transferred into the tub, and any macroinvertebrates found were placed into separate cups. This was repeated three times, and then the students recorded their findings.

Goode’s Pond is very close to the West Shore Expressway, which makes it an interesting pond to study due to the likely presence of runoff pollution from the highway. These surveys were completed along with water quality tests to check pH, dissolved oxygen, water temperature, and salinity. During these surveys, the Clay Pit Ponds education team and students found damselfly nymphs, dragonfly nymphs, backswimmers, midge larvae, crane fly larvae, black fly larvae, mosquito larvae, aquatic beetles, snails, and aquatic worms. While no pollution sensitive species have been found, which would indicate cleaner water, the samples did include many species that do not tolerate heavily polluted water. From this study we learned that the water in the ponds is in fair to moderately good condition at this time. With continued efforts to clean up in and around the ponds, we can keep this important habitat clean and preserve opportunities to see a diversity of wildlife, from dragonflies to great blue herons.

Goode's Pond, photo by Mikey Bard
Goode’s Pond is fairly healthy, based on students’ findings of macroinvertebrates. photo by Mikey Bard

If you would like to help Clay Pit Ponds State Park Preserve improve the health of its ponds, join in for the National Public Lands Day Clean-Up on Saturday, September 24th from 10:00AM to 1:00PM! Participants will clear litter from the highways that border the park to prevent it from being washed into the ponds. The clean-up will start at the Nature Interpretive Center located at 2351 Veterans Road West, Staten Island, NY. All ages are welcome! Please RSVP by contacting Emily Becker at emily.becker@parks.ny.gov or (718) 605-3970 x201.

Post by Mikey Bard, SCA/Americorps Member serving as Assistant Environmental Educator at Clay Pit Ponds State Park Preserve

Rebuilding NYC After the Great Fire: Clay Mining on Staten Island

In 1836 Balthasar Kreischer emigrated from Bavaria to New York City with plans to help rebuild the city after the devastating fire the previous year.  The Great Fire of 1835 burned across 50 acres and destroyed 674 buildings.  Kreischer and his partner, Charles Mumpeton established the Kreischer Brick Manufactory, a firebrick businesses with locations in Manhattan, Staten Island, and New Jersey.  In the neighborhood now known as Charleston on Staten Island, he began mining for clay that would then be shipped to brickwork factories in Manhattan.  The business flourished until Kreischer’s death in 1886.  A few years after his death, the factory burned down, and although it was rebuilt, the business never recovered.

The remnants of the clay mining are still visible today from the hiking trails of the park.  Some of the clay pits have filled with water and provided habitat to new flora and fauna, while others remain dry and are home to flourishing skunk cabbage.  There are areas along the trails where you can still find signs of the former inhabitants of the area, untouched glimpses into the lives of those who once lived in this beautiful area.  Outside of the Interpretation Center are some of the historic Kreischer bricks in the walkway, guiding you away from the rush of city life and into the quiet serene that is Clay Pit Ponds State Park Preserve.

balthasar kreischer
Balthasar Kreischer. Image courtesy of the Staten Island Museum Collection.
kreischer bricks
Kreischer bricks at Clay Pit Ponds State Park Preserve.

Post by Clare Carney, OPRHP, Clay Pit Ponds State Park Preserve.


The History of Clay Pit Ponds

The Winant/Gericke House at Clay Pit Ponds State Park Preserve was constructed by the Winant family before 1874. The Winants were among Staten Island’s earliest European settlers and established their farm close to the ferry landing along the Arthur Kill, where boats traveled daily between Staten Island and New Brunswick, New Jersey.

In 1946, the Gericke Family purchased the farm and Herbert Gericke established himself as an organic gardener. Gericke was an innovator, as “organic produce” was not widely known at that time. Among the crops he grew were comfrey (a traditional healing herb), strawberries, pansies, tomatoes, and rhubarb. He also operated a health food store. When it was sold to the State of New York in 1979, the Gericke Farm was the last working Farm on Staten Island.

Today, Gericke Farm is one of the last working farms in New York City. P.S. 37, a special education school within the New York City Department of Education system, works in cooperation with the New York State Office of Parks, Recreation, and Historic Preservation to execute special programming. Students come to the farm every year to plant, cultivate, and harvest crops. The students then sell the crops to other students and family members at a Youth Market Program. It is a successful farm-to-table experience, which allows the students to gain a deeper understanding of where their food comes from, as well as teaching them teamwork skills and positive food attitudes through work in the garden.

Gericke persuaded a closing coffee factory to dump 56 truckloads of coffee beans on his land to help improve the land’s fertility. Picture courtesy of The Organic Farmer, 1949.
People traveled several miles to purchase produce from Gericke’s organic farm. Image courtesy The Organic Farmer, 1949.

Post by Elisabetta OConnor, Environmental Educator at Clay Pit Ponds State Park Preserve.